372 research outputs found

    Exactly solvable configuration mixing scheme in the vibrational limit of the interacting boson model

    Get PDF
    An intruder configuration mixing scheme with 2n-particle and 2n-hole configurations from n=0 up to n→ in the U(5) (vibrational) limit of the interacting boson model is proposed. A simple Hamiltonian suitable to describe the intruder and normal configuration mixing is found to be exactly solvable, and its eigenstates can be expressed as the SU(1,1) coherent states built on the U(5) basis vectors of the interacting boson model. It is shown that the configuration mixing scheme keeps lower part of the vibrational spectrum unchanged and generates the intruder states due to the mixing. Some low-lying level energies and experimentally known B(E2) ratios of Cd108,110 are fitted and compared with the experimental results

    Emerging Theranostic Nanomaterials in Diabetes and Its Complications

    Get PDF
    Diabetes mellitus (DM) refers to a group of metabolic disorders that are characterized by hyperglycemia. Oral subcutaneously administered antidiabetic drugs such as insulin, glipalamide, and metformin can temporarily balance blood sugar levels, however, long-term administration of these therapies is associated with undesirable side effects on the kidney and liver. In addition, due to overproduction of reactive oxygen species and hyperglycemia-induced macrovascular system damage, diabetics have an increased risk of complications. Fortunately, recent advances in nanomaterials have provided new opportunities for diabetes therapy and diagnosis. This review provides a panoramic overview of the current nanomaterials for the detection of diabetic biomarkers and diabetes treatment. Apart from diabetic sensing mechanisms and antidiabetic activities, the applications of these bioengineered nanoparticles for preventing several diabetic complications are elucidated. This review provides an overall perspective in this field, including current challenges and future trends, which may be helpful in informing the development of novel nanomaterials with new functions and properties for diabetes diagnosis and therapy.Peer reviewe

    Investigation on Internal Short Circuit Identification of Lithium-Ion Battery Based on Mean-Difference Model and Recursive Least Square Algorithm

    Get PDF
    Electric vehicles powered by lithium-ion batteries take advantages for urban transportation. However, the safety of lithium-ion battery needs to be improved. Self-induced internal short circuit of lithium-ion batteries is a serious problem which may cause battery thermal runaway. Accurate and fast identification of internal short circuit is critical, while difficult for lithium-ion battery management system. In this study, the influences of the parameters of significance test on the performance of an algorithm for internal short circuit identification are evaluated experimentally. The designed identification is based on the mean-difference model and the recursive least square algorithm. First, the identification method is presented. Then, two characteristic parameters are determined. Subsequently, the parameters of the significance calculation are optimized based on the measured data. Finally, the effectiveness of the method for the early stage internal short circuit detection is studied by an equivalent experiment. The results indicate that the detection time can be shortened significantly via a proper configuration of the parameters for the significance test

    An immunological electrospun scaffold for tumor cell killing and healthy tissue regeneration

    Get PDF
    Antibody-based cancer immune therapy has attracted lots of research interest in recent years; however, it is greatly limited by the easy distribution and burst release of antibodies. In addition, after the clearance of the tissue, healthy tissue regeneration is another challenge for cancer treatment. Herein, we have developed a specific immunological tissue engineering scaffold using the agonistic mouse anti-human CD40 antibody (CD40mAb) incorporated into poly(l-lactide) (PLLA) electrospun fibers through the dopamine (PDA) motif (PLLA-PDA-CD40mAb). CD40mAb is successfully incorporated onto the surface of the electrospun fibrous scaffold, which is proved by immunofluorescence staining, and the PLLA-PDA-CD40mAb scaffold has an anti-tumor effect by locally releasing CD40mAb. Therefore, this immunological electrospun scaffold has very good potential to be developed as a powerful tool for localized tumor treatment, and this is the first to be reported in this area.Peer reviewe

    Identification and validation of potential diagnostic signature and immune cell infiltration for NAFLD based on cuproptosis-related genes by bioinformatics analysis and machine learning

    Get PDF
    Background and aimsCuproptosis has been identified as a key player in the development of several diseases. In this study, we investigate the potential role of cuproptosis-related genes in the pathogenesis of nonalcoholic fatty liver disease (NAFLD).MethodThe gene expression profiles of NAFLD were obtained from the Gene Expression Omnibus database. Differential expression of cuproptosis-related genes (CRGs) were determined between NAFLD and normal tissues. Protein–protein interaction, correlation, and function enrichment analyses were performed. Machine learning was used to identify hub genes. Immune infiltration was analyzed in both NAFLD patients and controls. Quantitative real-time PCR was employed to validate the expression of hub genes.ResultsFour datasets containing 115 NAFLD and 106 control samples were included for bioinformatics analysis. Three hub CRGs (NFE2L2, DLD, and POLD1) were identified through the intersection of three machine learning algorithms. The receiver operating characteristic curve was plotted based on these three marker genes, and the area under the curve (AUC) value was 0.704. In the external GSE135251 dataset, the AUC value of the three key genes was as high as 0.970. Further nomogram, decision curve, calibration curve analyses also confirmed the diagnostic predictive efficacy. Gene set enrichment analysis and gene set variation analysis showed these three marker genes involved in multiple pathways that are related to the progression of NAFLD. CIBERSORT and single-sample gene set enrichment analysis indicated that their expression levels in macrophages, mast cells, NK cells, Treg cells, resting dendritic cells, and tumor-infiltrating lymphocytes were higher in NAFLD compared with control liver samples. The ceRNA network demonstrated a complex regulatory relationship between the three hub genes. The mRNA level of these hub genes were further confirmed in a mouse NAFLD liver samples.ConclusionOur study comprehensively demonstrated the relationship between NAFLD and cuproptosis, developed a promising diagnostic model, and provided potential targets for NAFLD treatment and new insights for exploring the mechanism for NAFLD

    Straw and phosphorus applications promote maize (Zea mays L.) growth in saline soil through changing soil carbon and phosphorus fractions

    Get PDF
    IntroductionStraw return has been widely recognized as an important carbon (C) enhancement measure in agroecosystems, but the C-phosphorus (P) interactions and their effects on plants in saline soils are still unclear.MethodsIn this study, we investigated the effects of straw return and three P application levels, no P fertilizer (Non-P), a conventional application rate of P fertilizer (CP), and a high application rate of P fertilizer (HP), on maize growth and soil C and P fractions through a pot experiment.Results and discussionThe results revealed that the dry matter weight of maize plant was no difference between the two straw return levels and was 15.36% higher under HP treatments than under Non-P treatments. Plant nutrient accumulations were enhanced by straw addition and increased with increasing P application rate. Straw application reduced the activities of peroxidase (POD), superoxide dismutase (SOD), catalase, and the content of malondialdehyde (MDA) in maize plants by 31.69%, 38.99%, 45.96% and 27.04%, respectively. P application decreased SOD, POD activities and MDA content in the absence of straw. The contents of easily oxidized organic carbon (EOC), particulate organic carbon (POC) and the ratio of POC/SOC in straw-added soils were 10.23%, 17.00% and 7.27% higher, respectively, than those in straw-absent soils. Compared with Non-P treatments, HP treatments led to an increase of 12.05%, 23.04% in EOC, POC contents respectively, while a decrease of 18.12% in the contribution of MAOC to the SOC pool. Straw return improved the P status of the saline soil by increasing soil available P (14.80%), organic P (35.91%) and Ca2-P contents (4.68%). The structural equation model showed that straw and P applications could promote maize growth (indicated by dry matter weight, P accumulation, antioxidant enzyme activity and MDA content) through improving soil C and P availabilities.ConclusionThis study provides evidence that straw return together with adequate P supply in saline soil can promote crop nutrient accumulation, attenuate the oxidation damage on crop growth, and be beneficial for SOC turnover and soil P activation
    • …
    corecore